Chapter 3: Machine-Level Representation of Programs

 Computers execute machine code, sequences of bytes encoding the low-level operations that manipulate data, manage memory, read and write data on storage devices, and communicate over networks. A compiler generates machine code through a series of stages, based on the rules of the programming language, the instruction set of the target machine, and the conventions followed by the operating system. The gcc C compiler generates its output in the form of assembly code, a textual representation of the machine code giving the individual instructions in the program. gcc then invokes both an assembler and a linker to generate the executable machine code from the assembly code. In this chapter, we will take a close look at machine code and its human-readable representation as assembly code.
[image:]
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:][image:]
[image:]

[image:]
[image:]
[image:]
[image:][image:][image:]
[image:]
[image:][image:]
[image:][image:][image:][image:][image:][image:][image:][image:][image:]

[image:]

[image:]
[bookmark: _GoBack][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:]

FUNCTION Call Stack and Activation Record
· The function call stack is the perfect data structure for handling this information.
· Each time a function calls another function, an entry is pushed onto the stack.
· This entry, called a stack frame or an activation record, contains the return address that the called function needs in order to return to the calling function.
· If the called function returns, instead of calling another function before returning, the stack frame for the function call is popped, and control transfers to the return address in the popped stack frame.
· The beauty of the call stack is that each called function always finds the information it needs to return to its caller at the top of the call stack.
· If one function makes a call to another, a stack frame for the new function call is simply pushed onto the call stack.
· Thus, the return address required by the newly called function to return to its caller is now located at the top of the stack.
· The stack frames have another important responsibility.
· Most functions have automatic variables—parameters and any local variables the function declares.
· Automatic variables need to exist while a function is executing.
· They need to remain active if the function makes calls to other functions.
· But when a called function returns to its caller, the called function’s automatic variables need to “go away.” The called function’s stack frame is a perfect place to reserve the memory for the called function’s automatic variables.
· That stack frame exists as long as the called function is active.
· When that function returns—and no longer needs its local automatic variables—its stack frame is popped from the stack, and those local automatic variables are no longer known to the program.
· The amount of memory in a computer is finite, so only a certain amount of memory can be used to store activation records on the function call stack.
· If more function calls occur than can have their activation records stored on the function call stack, an error known as stack overflow occurs.
· Consider how the call stack supports the operation of a square function called by main (lines 9–14 of Fig. 5.12).
· [image:]
·
· First the operating system calls main—this pushes an activation record onto the stack (shown in Fig. 5.13).
· The activation record tells main how to return to the operating system (i.e., transfer to return address R1) and contains the space for main’s automatic variable (i.e., a, which is initialized to 10).
· Function main—before returning to the operating system—now calls function square in line 13 of Fig. 5.12.
· This causes a stack frame for square (lines 17–20) to be pushed onto the function call stack (Fig. 5.14).
· This stack frame contains the return address that square needs to return to main (i.e., R2) and the memory for square’s automatic variable (i.e., x).
· [image:][image:]
· After square calculates the square of its argument, it needs to return to main—and no longer needs the memory for its automatic variable x.
· So the stack is popped—giving square the return location in main (i.e., R2) and losing square’s automatic variable.
· Figure 5.15 shows the function call stack after square’s activation record has been popped.
·
· [image:]
· main now displays the result of calling square (line 13).
· Reaching the closing right brace of main causes its activation record to be popped from the stack and gives main the address it needs to return to the operating system (i.e., R1 in Fig. 5.13) and causes the memory for main’s automatic variable (i.e., a) to become unavailable.
· You’ve now seen how valuable the stack data structure is in implementing a key mechanism that supports program execution.

image5.png
Assembly/Machine Code View

cru Addresses. (g
Registers. o
PC Data
Condition Instructions stack
Codes
Programmer-Visible State

Program counter = Memory

* Addressof next instruction * Byte addressalearray

« Called"RIP" (x86-64] « Code anduserdata

« Register file « Stackto supportprocedures

+ Heavilyused programdata

« Store statusinformation about most
recent arithmeticor logical operation

e U5€9 fOrconditiongl branching "

image6.png
Turning C into Object Code

= Code infiles p1.c p2.c
= Compile with command: gee —Og p1.¢ p2.¢ -0 B
» Use basic optimizations(-Og) [New to recent versions of GCC]
+ Put resultingbinary infilep

text Cprogram (p1.c p2.c)

Compiler (gec ~Og -S)

text [Asmprogram (p1.s p2.s)

Assembler (goc or as)
binary [Object program (1.0 p2.0) Static ibraries

(-a)

Linker (gec or 1d)

binary

image7.png
Compiling Into Assem|
C Code (sum.c)

bly

Generated x86-64 Assembly

Tong plus(long x, long ¥)

void sumstore(long x, long ¥,
long *dest)

{

long t = plus(x, ¥);

“dest

‘Obtain (on shark machine] wit!
gee ~0g —S sum.c

Produces file sum. s

command

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 05X, ..) due to different

versions of gec and different compi

r settings.

image8.png
Assembly Characteristics: Data Types

= “Integer” data of 1,2, 4, or 8 bytes
= Datavalues
= Addresses (untyped pointers)

= Floating point data of 4, 8, or 10 bytes
= Code: Byte sequences encoding series of instructions
= Noaggregate types such as arrays or structures

= Just contiguously allocated bytes inmemory

image9.png
x86-64 Integer Registers

[srax = [sr8 [orea
[srbx e [5x9 [oroa
[srcx [pecx [sr10 forioa
[srax = [ar11 foriza
rsi = [ar12 fpriza
[srai =N [sr13 foriaa
[srsp. = [sr1a foriaa
[srbp. = [sr1s5 forisa

= Can reference low-order 4 bytes (also low-order 1& 2 bytes)

image10.png
322 Code Examples
‘Suppose we write a C code file cod. < containing the following procedure defini-
tion:

sac sunCine x, fmt y)
i
mrrexey

¥

To see the assembly code generated by the Ccompiler, we can e the -5 option
on the command line:

wniz> gec 01 -5 code.c

“This will cause Gcc 1o run the compiler, generating an assembly file code. 5, and go.
0 forther. (Normally it would then invoke the assembler to generate an object-
code fle)

“The assembly-code file contains various declarations including the setof lines:

pustl tebp

movl Yesp. tetp
movl 120kebp). Year
. sCietp). teax
aadl tgear, accm
opl tebp

Eachindented line n the above code corfesponds to asingle machine instruction.
For example, the push nstruction indicates that the contents of register %abp
Should be pushed onto the program stack. All information about local variable.
names or data types has been stripped away. We still see a reference to the global

image11.png
“To inspect the contents of machine-code fils, clas of programs known as
disassemblers can be invaluable. These programs generate a format similar {0
‘assembly code from the machine code. With Linux systems, the program omiour.
(for “object dump") can serv his role given the *~d’ command-line lag:

wnix> objdump ~d code.o

The resultis (where we have added line numbers on the left and annotations in
italcized text) as follows:

1 00000000 <sum>
Oftect Byten Equiraient ssscsbly Lmguge
2 s pusn ety
3 895 mov esp.tebp
. & 45 0c sov OxcCioby) feax.
s 0345 08 28 OxCoby) feax
. 010500000000 add feax,0m
7 s pop et
. @ et

image12.png
3.2.3 Notes on Formatting

“The assembly code generated by Gec s dificut for a human 10 read. On one hand,
it contains information with which we need not be concerned, while on the other
hand, it does not provide any description of the program or how it works. For
‘example, suppose the file s1=ple. c contains the following code:

sac siaplotiat wxp, 12t y)
i

smersemoey

B

¥

‘When Gec is run with flags
sisple.s

‘and 01", it generates the following fle for

popl tebp
.size simple,

Cidem vace:

image13.png
Al of the lines beginning with °." e dircctives to guide the assembler and.
linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the nstructions do or how they relate to the source code.

“To provide a clearer prescniation of assembly code, we will show it i a form
that omils most of the directives, while including line numbers and explanatory
‘annotations. For our example, an annotated version would appear as follows:

siaple:
puenl fabp Save fease poister
Bov fesp, Yabp Creste sew frams poiacer

4 mol sOlebp. feds gecricre xp
S movl 12(tebp), feax fecriove y

§ Al Cean), feax s e o g e

7 mev feax, (ed) Seers : sz

5 R e Restare frame printer.

‘We typically show only the lines of code relevant tothe point being discussed.
Each line Is numbered on the leftfor reference and annotated on the right by a
brief description of the effectof the instruction and how it reates (o the computa-
tionsof the original C code. This i astylized version of the way assembly-language.
programmers format their code.

image14.png
3.4 Accessing Information

AR 1A2 central processing unit (CPU) contains a set of cight regisers storing
‘32-bit valucs. These registers are used {0 store integer data as well as pointers.
Figure 3.2 diagrams the eight registers. Their names all begin with %, but other-
wise, they have peculiar names. With the original 806, the registers were 16 bits
and each had a speciic purpose. The names were chosen to refect these different
purposes. With fataddressing, the nced forspecialized registers i greatly reduced.
For the most part, the firstix registers can be considered general-purpose regis-

figue 3.2 at T
1A32 Integer registrs. —
Al cight registes can = [
be accesed 35 cither 16
bis (word) or 32 bit pecx e o
(doubleword). The 2 low-
order bytes of the st our 123 o o |
regites can be accesed
independently = s | o
ees s
eas s
= e Stck poiner
= s Frameporter

image15.png
341 Operand specifiers

Most instructions have one or more operands, specifying the source values to
Feference in performing an operation and the destination location into which to
place the result. IA 32 supports a number of operand forms (see Figure 3.3). Source.
Values can be given as constants o read from ragisters or memory. Resulls can be
stored n either registers of memory. Thus,the different operand possibilites can
be classified into three types. The firs type, immediate, i for constant values. In
ATT-format assembly code, these are written with a " followed by an integer
‘using standard C notation, for example, $-577 o SOxIF. Any value that fis into
'232-bit word can be used, although the assembler will use 1- or 2-byte encodings

Tope, Form Operand value Name.
Tmmediae sl T, Tmmedinte
Regiter B RE] Reister

Memory Imm Milmn] Absolute

Memory @) MIRE] Indicect

Memory ImmE) Milmn + RIE] Base + displacemeat
Memory &.5) MIREE; |+ RIE] Indexced

Memory Imm(E.E) Milmm+RIE]+RE] Indexcd

Memory CE.5) MIRE]5] Scaledindexed
Memory ImmCE.5) Milmm+RIE] 5] Scaledindexed
Memory 5.0 MIREE; |+ REE]-5] Scaledindexed

Memory Imm(Ey.E.5) Milmm + RIE|+ RIE]-s] _Scaled indexcd.

Figure 3.3 Operand forms. Operands can denote immediate (constant) vaues,regster
Values, orvales from memory. The scaing factor s mustbe efher 1, 2,4, or .

image16.png
Tnstruction__Eifect Descrption

o sp pes Move

B3 Movebyic

sowe Move word

sovl Move double word

wovs S0 D Signbxtend(s) Move with sign exteasion

E= Move sign-cxtendsd byt to word

sovebl Movesign-cxtended byte to double word.

soves) Movesign-extended word o double word

Movz_ S.D D Zerobxiendss) Move with zro extension

E= Move zero-cxtended byis (o word

sovzbl Move zero-cxtended byte o double word.

sovzsl Move zero-cstended word to double word.

skl S Ritesp] «Ritespl— Push double word.
MR[tesp] 5

sopl D D MRitasslk Pop double word

RiYespl « Riespl + 4

Figure 3.4 Data movement Instructions.

image17.png
‘The final two data movement operations are used to push data onto and pop
data from the program stack. As we willsee, the stack plays a vita role in the
handiing of procedure calls. By way of background, a stack is a data structure
‘where values can be added or deleted, but only according 10 a “ast-n, fist-out”
discipline. We add data 10 stack via a push operation and femove it via a pop 0p-
eration, wih the property that the value popped will always be the value that was
most recently pushed and isstill on the stack. A stack can be implemented as an
array, where we always insert and remove clements rom one end of the aray. This
end s called the 0p of the stack. With IA32, the program stack is stored in some
region of memory. As lustrated i Figure 3.5, thestack grows downward such that
the top element of the stack has the lowest address of allstack clements. (By con-
ention, we draw stacks upside down, with the stack “(op” shown at the bottom
of the figure). The stack pointer %esp holds the address of the top stack element.

image18.png
ity s e oom toax
T [o o [o o [o
o %om | o o [o
Towp | s Tosp | orion Tosp [orioe
Stack voton” Stack ot Stack boton”

e i e
Sk op” Stack op”

Figure 3.5 ustration of stack operation. By conventon, we draw stacks upside
‘down, 50 tha the "top” of the stac s shown at the bottom. IA32 stacks grow toward
Ioer s, sopuing v decemnting e ack poor (e sp) and
Lot ey e popng ohes e o mnryand cementng e

“The pusi instruction provides the ability to push data onto the stack, while
the pop1 Instruction popsi. Each of these instructions takes a single operand—the.
data source for pushing and the data destination for popping.

Pushing a double-word value onto the stack involves first decrementing the
stack pointer by 4 and then writing the value at the new t0p of stack address.
‘Therefore, the behavior of the nstruction push %ebp is equivalent (o that o the
pair of instructions

sub1 54,%0s0 Decresent stack pointer
mov1 Yebp. Clesp) Stare febp o stack

image19.png
Tnstraction__Effet Descrption

[a——y Toad lfective address
me D DeD+l Increment

b D DeD-1 Desrement

MG D De-D Negate

st D De-D Complement

ap S0 Debss Add
S S0 DeD-S St
muL S.D DeDes Mukiply
Xor 5D DeD-S Exclsiveor
o S0 Debis Or

0 S0 DeDES And

SU 6D Debeck Lemshit
S 6D DeDeck Leshift(ame s sat)
S LD DeD>uf Aithmeticrightshift
S 6D D D>k Logical ightshift

Figure .7 Integer arlthmetic operations The oad efectv address (1ea1) nsruction
5 commonly used t perfom simple arthmetic. The remaning ones are more sandard
unary or binary operatons. We use the notation >, and >>, o denote arthmetic
and logical ight il respactively. Note the nonitufive ordeing of the operands with
ATT-format assembly code.

image20.png
Moving Data Srax

= Moving Data rox
mova Source, Dest:

i

= Operand Types 3rbx
= Immediate: Constant integer data
= Example: $0x400, $-533 Frdi
* Uke constant but prefixed with °57 (==
= Encoded with 1, 2, or 4 bytes
= Register: One of 16 integer registers. 3rbp
- Erample: srax, $r13 =

« But sTsp reserved for special use
« Others have special uses for particular instructions

= Memory: 8 consecutive bytes of memory at address given by register
+ Simplestexample: (3rax)
« Various other “address modes”

image21.png
movq Operand Combinations

Source Dest Sre,Dest CAnalog
Reg movy $0x4,%rax temp = oxa;
Imm
Mem movq §-147, (srax) *p = -147;
move { Reg | Reg mova srax,srax temp2 = templ;

Mem movg srax, (svdx) *p = temp:

Mem Reg mova (3rax) srax temp = *p;

Cannot do memory-memory transfer with a single instruction

image22.png
Simple Memory Addressing Modes

= Normal (R) Menm[Reg[R]]
= Register R specifies memory address
= Ahal Pointer dereferencing in C

movg (¥rcx) , ¥rax

= Displacement D(R) Menm[Reg[R}+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movq 8(3rbp) ,Frdx

image23.png
rdx, (¥rdi)
erax, (arsi)

image24.png
Complete Memory Addressing Modes

= Most General Form
D(Rb,Ri,S) MemiReg[Rb]+S*Reg[Ril+ D]
=D: Constant “displacement” 1,2, or 4 bytes.
= Rb: Base register:Any of 16 nteger registers
=R Index register: Any, except for rsp
=S Scale: 1,2, 4, or 8(why these numbers?)

u Special Cases.
(Rb,Ri) MemiReg[Rb]+Reg[Ril]
D(Rb,Ri) MemiReg[Rb]+Reg[Ril+D]
(Rb,Ri,S) MemiReg[Rb]+S*Reg[Ril]

image25.png
Address Computation Examples

#rax | ox£000

#rox | 0x0100

Expression Address Computation | Address
0x8 (svax) 0x£000 + 0x8 0x£008
(8rdx, $rex) 0x£000 + 0x100 |0x£100
(srdx, srcx,4) |OX£000 + 4%0x100 |0x£400
0x80(,5rdx,2) |2%0xf000 + 0x80 |0x1e080

image26.png
Understanding Arithmetic Expression
Example e
leag (srdiersi), brax £
[fong aritn 2adg erax, rax +t2
(long x, long ¥, long z) | leaq (ersi,ersi,2), brax
i salq. $4, ®rax # td
leag 4(hrai,erax), srox 5
imlg ercx, frax # a1
ret.

erai Argumentx
orsi Argumenty
erax Argumentz
srax €1, 82, Tval
erax t
srex t5

image27.png
=:6.1 Condition Codes

In addition to the integer registers, the CPU maintainsa st ofsingle-bit condiion
code registers describing atiibutes of the most recent aithmetic o logical opera-
tion. These registers can then be tested to perform conditional branches. The most
useful condition codes are

F: Carry Flag. The most recent operation generated a carry out of the most
Significant bit. Used o detect overflow for unsigned operations.

2F: Zero Flag. The most recent operation yielded zero.

SF: Sign Flag. The most recent operation yielded a negative value.

0F: Overflow Flag. The most recent operation caused a (wo's-complement
‘overllow—either negative or positive.

186 Chapter 3 Machine.Level Representation of rograms

Tnstruction__ Basedon Deseription
v w5 ses Compare
@ Compartye
= Compare word.

. Compare double word
w5 sEs Test
oy Testbyte

ezt Testword

cestl Testdowble word

Figure 2,10 Comparison and test Instructions. These instructions set the condition

codes without updating any othe registrs.

image28.png
Tnstruction_Synomym __Effect Setcondition
[— Doz Equal [0

setme D samz Do zE Notequal /notzero

st D Dese Negative

s Do Nomegative

setg D setle Do ~EFONEZE Greater (signed)

sstge D saml D -GEC0R) Greater o cqual (signed >2)
sl D semgs DeSEOF Less (igned <)

sstle D seng D (FORIZF Lesorcqual (igncd <)
sta D sambe Do -GFEZE Above (unsigned)

setas D samp De-cr Above or cqual (unsigned >=)
ssth D camse DeCr Below (unsigned <)

ssthe D cams Do GRIZE Below or cqual (unsigned <)

Figure 2,11 The ser Instructions. Each Insiruction ses a ingl byte {0 0 or 1 based
‘on some combination of the condition codes. Some Instructions have “Symonyms,” e,
alterate names for the same machine Instruction.

image29.png
Tnstruction_ Synonym _Jump condiion _ Description
S Label T Diceetjump.

Sup *Operand 1 Indireetjump.

o Labd 3z z Equal/ zer0

e Labl uz -z Not equal /ot zero

5o Label s Negative

us Label 5 Nonnegative

& Labd e -GF-O0NE-ZF Greater (sgned>)

e Labl gm ~s=-0m) Gresteror cqual (sgned >=)
S Labd juge seeo Less (sgned <)

e Labd ug (SFORIZF Les or cqual (sgned <)
5a Labd gmbe orze Above (unsigned)

e Labd ub o Above or equal (unsigncd >=)
3 Label aae o Below (unsigned <)

o Labd jma iz Below or equal (unsigacd <)

Figure 2,12 The jump Instructions. These Instructons Jump to 2 labeled destnation
‘when the ump condition holds. Some Insructions have “synonyms.” altenate names

forthe same machine Insiruction.

assembly code by a label. Consider the following (very contrived) assembly-code

sequence:

T vt 50.geax

Lt

L

5 aon Glean) teax

Set tons 0.0

image30.png
@ Onignal C code. ©) Equnalent goto verson
s absdifrGine x, dmy) € 1 dne gorodifrGias x, at) {

2 ey 2 g
) aurn y - x; H iy
i e . oto x_g0_y:
s retum x - s resule = 3
E ‘ goto done:
7 sy
. rasult
o aome:
0 return zesuls:
S
(© Generated assembly code
« st tompes, y se fompraz
© Taen8Ctewm). feax o
2 12016bp), foax Gty
) fowx, fodx Compare xiy
‘ ey it pore xzey
s fodx, foar Compute remuit - yx
. 1 Gota done
. foax, Yodr Compute remuit = xy
s fodx, Yoar sec resuls as roturm vatse

done: Gepin completion code
Figure 3.1 Complation of conditional statements. C procedure sbdi= (pat ()
contains an false satement. The generated assembly coda i shown (part (), along
With 2 C procedure gotodi £ (part (5) that mmics the contro flow o the assembly
Code. The stackset-up and completion portons of the assembly code have been omitid.

image31.png
198 Chapter3 Machine-Level Representation of Programs

(@ Ceote (O Comesponding assembly-language code:
1 tme face doCin m srgmet: 2 2t tevpes
: ot Regtaters: 2 in foax, result in feax
S me resae T mowl SCtebp), feds s
i et D mw s temx Er——
s resule v n: s o
. 8= o ml feax, femr compure renc oo
7 Yl G S mbl s edr Decresent 2
¢ revum resuls: ¢ am s edx p—
sy ; 152, goto toop
® Regiter usage
Regier _ Variable _Intally
Yeax remi 1
Yeax » B

Figure 314 Code for do-while version of factorll program. The C code, the generated
assembly code, and a able of egiter usage s shown.

image32.png
@Ceote ®) Equnalent gotoversion
[Ep——— © e gace_unile_gotoCiat
H [

S e S e
o emeasni © twen
s a s aoto done:
;o S e e
o rewrn resuin; o meen
sy s sasy
® aoto Loops
R
[—
S
(O Comesponding assembiy-anguige code
segment 5 ¢ 1ovpe0
Reginters: 5 in foax, remutc in fonx
norl Sty tedx ceis
ol 1, eax -
apl s edx Gonpre 2:1

Figure 315 C and assambly code for wi1s version of factoral. The £act._vhile
goto function flustrates the operation of the asembly code version.

image33.png
(@ Onginal Ccode

sas abaditeCine x, int y) {
ot x <3 7 yx t xy

FS
(©) Generated assembly code
= a¢ tebpes, a¢ ebpesz.
1 TaewsCtew). feex
D mevl 120kebp), tedr
S mev feax, tebr
o el fecx, tem
s omevl fecx, fear
o el fedx, fear
7l fedx, fecx
5 cmovl femx, fear

) Implementation using conditional
assgnment.

st caovaifrCine x, fne) {

s 7+ Line below requires

. siagle smstruction: */
7 i (cest) rval = cwal;

. rotura Tval;

ooy

I <, replace rotu value with yx

40 3.16_Complton of conitona satements using conitonal assgert.
Chmcton sseat 2) contas a conclion xprsion e enesed sy coe
o 0, o i 3 C fonction cn £ () It miric s cpeatn f i

assembly code. The stack set-up and completion portons of the assembly code have
been omited.

image34.png
Tnstruction__ Synonym _ Move condition _ Desription
e —— Equal 2er0

v SR cmowms 26 Not equal ot zero

ove SR s Negative

E——1 - Nonnegative

caovg SR coowmle ~(GF-OR&-ZF Greater signed)

cmoves SR caml -(SF-0F) Greater or cqual (signed =)
o SR caowmge SE-OF Less (igned <)

caovie SR cavmg (SFTORIZ Lesorcqul (sgacd <)
cova SR caowbe CrEZE Above (unsigned)
P Above or cqual (Unsigned >2)
o SR cawmse G Below (unsigned <)

cacwe SR caowa CEIZE below or cqual (unsigned

Fiqure 2,17 The conditional move Instructions. These Instructons copy the source.
value § to s destination when the move condition holds. Some Instnctions have
“synonyms,” altemate names for the same machine Insructon.

image35.png
Sed PrmREmEs

A procedure call involves passing both data (in the form of procedure parame-
ters and return values) and control from one part of a program 1o another. In
addition, it must allocate space for the local variables of the procedure on entry
and deallocate them on exit. Most machines, including IA32. provide only simple
instructions for transferring control to and from procedures. The passing of data
and the allocation and deallocation of local variables i handied by manipulating
the program stack.

3.

Stack Frame Structure

1A32 programs make use of the program stack 10 support procedure calls. The
machine uses the stack {0 pass procedure arguments, Lo tore return nformation,
tosaveregistersforlater restoration, and for local torage. The portion o the stack.
allocated for a single procedure call i called a stack frame. Figure 321 diagrams
the general structure of a stack frame. The topmost stack frame is delimited by
o pointers, with register Yabp serving as the frame pointer, and regiler Yesp

image36.png
Jgure 3.21 ——

Stack frame structure. The.
stack s used for passing
anguments, for storing
retum nformation, for
saving regiters, and for .
local storage. Eariorames.
Incrsasing
fty
astn| wgumantn
Gl rame
8| argument
| y—
Frame paner
e
-
Saved ragters,
Tocal varabies,
o
tomporares | Curent Fame.
rqument
o e
s
‘Sack

Serving as the stack pointer. The stack pointer can move while the procedure is
‘exccuting, and hence mst information s accessed relative to the frame pointer.
Suppose procedure P (the caler)calls procedure 0 (the calee). The arguments
10 0 are contained within the stack frame for P. In addition, when P cals g,
the return address within » where the program should resume execution when
it returns from 0 is aushed onto the stack formine the snd of B's stack frame The

image37.png
it svap_add(int +xp, int *yp)
i

¥
Figure 3.22 Examle of procedure definition and call.

o s
o o
e =
e =
i =
-
] =
— W
= | I e
Stack pointer. +4| Retum address
I -
=T P
e | ol e

Figure 3,24 Stack frames for caller and svsp_add. Procedure swsp_add felives
|ts arquments from the stack frame for caller.

image38.png
3.11 Life

the Real World: Using the GD8 Debugger

The GNU debugger Gon provides a number of useful features to support the
runtime evaluation and analysis of machine-level programs. With the examples
and exercises in this book, we attempt (o infer the behavior of a program by
just looking at the code. Using co, it becomes possible 10 study the behavior
by walching the program in action, while having considerable control over ts
exccution.

Figure 330 shows examples of some o commands that help when working.
‘with machine-level, IA32 programs. It i very helpfol to fist run owpUM 10 gel
a disassembled version of the program. Our examples are based on running Goa.
on the file prog described and disassembled on page 164, We sart Goa with the
Tollowing command lin:

wnie> gib prog.

The general scheme is 1o et breakpoinis near points of interest in the pro-
‘eram. These can be set to ust after the cniry ofafunction,or at a program address.
‘When one of the breakpoints is it during program execution, the program wil
halt and return conirol 1o the user. From a Dreakpoint, we can examine differcnt
registers and memory locations in various formals. We can also single-step the
program, running just a ew instructions at @ ime, or we can proceed {0 the nex!
breakpoint.

AS our examples suggest, Gon has an obscure command syniax, but the on-
line help information (invoked within Gon with the he1p command) overcomes
tis shoricoming. Rather than using the command-line Interface 10 Gon, many
programmers prefer using DDD. an extension to o thal provides a graphic user
Interface.

image39.png
Command Effect
Starting and stopping

it Exitaon
. Run your program (ive command line arguments here)
w1 Stop your program

Breakpoiats
bresk s Setbreakpoint at enty to function sua.
oresk +0x2045394 et breakpoint at address 028045308
detece 1 Delete breakpoint |
aatete Deleteall breakpoints

Exccution
scept Exceute one instruction
stepi & Exceute four instructons
sexts Like steps, but proceed through function calls
continue Resume exceution
imien Run until current function returns

Examising code

isss Dissssemble current function
disss s Dissssemble function sus

assas Oxe0sEzT
disas 0xB048304 Dz8045324
prias /xSeip
Examining data

prias Soax
prias /x Soax
prias /2 Soax
prias 0x100
prins /2555
prias /x (5e5p8)
rint «(iat +) CxEEEOTER0
Prias (int +) (Sabpss)
x/2u oxEsOTER0
x/200 em

Usefulinformation
safo frase
iafo rogisters
Belp

Disassemble function around address 038048397
Disassemble code within specified addres range.
Print program counter in hex

Print contents of eax in decimal
Print contents of Joax i hex

Print coatents of Jeax n binary

Print decimal representation o 0100

Print hex represenation of 355

Print contents of ebp pls §in hex

Print nteger at address Ox£E£076b0

Print iteger at address obp + 8

Examine two (4-byte) words starting at adress Ox ££07650
Examine first 20 byes of function su

Information sbout current stack frame.
Valuesof al the resisters
Get information sbout o

Figure 3.30 _ Example Gos commands, These examples flstrate some of the ways cos.
supports debuading of machinedevel broarams.

image40.png
3.12 Out-of-Bounds Memory References
and Buffer Overflow

‘We have seen that C does no perform any bounds checking for array references,
‘and that local variables are sored on the stack along with state information such
as saved register values and return addresses. This combination can lead to serious
program errors, where the state stored on the stack gets corrupted by a write 10 an
out-of-bounds array element. When the program then tries o reload the register
or execute a ret. instruction with this corrupted state, things can go seriously
wrong.

‘A particularly common source ofstate corruption is known as buffer overflow.
‘Typically some character array i allocated on the stack {0 hold a siring, but the
size of the siring exceeds the space allocated for the array. This is demonstrated
by the following program example:

o cnar egata(onar o)

B

‘ 0; /+ Hss st Lesst ons character basn Tead? +/
’ gotchar() 1= "\a' & ¢ 1= EOF) {

i i /o No bounds chacking! +/

s 1

n J+ Termizate srizg +/

2 £0F & tgotchar)

5 ‘meturn WILL; /+ Zad of £ile or error */

image41.png
17 /+ Read input line and write it back %/,
15 void scho0)

ot
= cnar bug(8l; /e ey oo smailt o/
B govs bun

= puss (bur

Y

“The preceding code shows an implementation of the library function gats
to demonstrate a serious problem with this function. It reads 2 line from the
Standard input, stopping when either a terminating newline character of some.
error condition i encountered. I copies ths sring (o the location designated by
argument s, and terminates the sring with a null character. We show the use of
gots in the function scko, which simply reads a line from standard input and
‘cchoes it back to standard output.

“The problem with get i that it has no way 1o determine whether sufficient
Space has been allocated to hold the entire string. In our scho example, we have.
purposely made the bulfer very small—just eight characters long. Any string
longer than seven characters will cause an out-of-bounds write.

“Examining the assembly code generated by e for echo shows how the stack
s organized.

o
: pueml tfemp Save te0p on seack

5 mev femp, tewe

o pueml fem Save tenx

S el 820, Yesp Aiocate 2 byres o seack
6 leal -12(tebp). febx Compue bur as Gorpiz

7 mevl febx, (lesp) St tur st top of sesck
sl gews Cat goes

S mevl febx, (esp) scers tur st top of seack
o el puws ca pues

N sam w0, fesp Deatiocate stack apace.

o pepl tem Restors tox

B popl febp Rescors To0p.

We can see i this example that the program stores the contents of registers %stp.
‘and %ebx on the stack, and then allocates an aditional 20 bytes by subiracting 20
from the tack pointer (lne 5). The location of character array bt i computed as
12 byes below ebp (lne 6), just below the stored value of %eb, as lustrated in
Figure 331. As long as the user types at most seven characters, the string returned

image42.png
Figure 331
Stack organization for
‘ccho function. Character Sk fame

amay bus s st below part forcaller

of the aved state. An out- et sdreee

o bounds wrte o bus can Sovedterp < tetp
comupt the program stat. ——

Stack rama | [0
torecao | 1] a1

Stored on the stack. As the string gets longer, the following information wil get

corrupted:
Characterstyped_ Additonal corrupted state
o7 None
511 Saved value of fobx
215 Saved value of fsbp.
1619 Return address
24 Saved state n caller

A this table indicates, the corruption is cumulative—as the number of char-
actersincreases, more state gets corrupted. Depending on which portions of the
State are affected, the program can misbehave in several different ways:

« Ifthe stored value of %sbx s corrupted, then this register will not be restored
properly in ine 12, and so the caller will not be able (o el on the integrity of
this register, even though it shovld be callee-saved.

« Ifthe stored value of %sbp s corrupted, then this register will not be restored
properly on line 13, and 5o the caller wil not be able to reference s local
Variables or parameters properly.

« I the stored value of the return address is corrupted, the the et instruction
(line 14) will cause the program to jumg to a totally unexpected location.

image43.png
Aside Worms and viruses

Both worms and viruses are picces of code that attempt {0 spread themselves among computers. As
described by Spafford [102]a wormisa rogram thatcan run by fselfand can propagatea fully working.
version offself toother machines A virus i pcce of code that adds tself o other programs including.
operating systems. I cannot run independently In the popular pres,the erm “virus" s used o fefer
1012 varity of ifferent strategis for spreading attacking code among systems, and so you will ear
‘peoplesaying “virus” for what more properly should be called a “worm."

3121 Thwarting Buffer Overflow Attacks

Buffer overflow attacks have become so pervasive and have caused so many
problems with computer systems that modern compilers and operating systems
have implemented mechanisms to make it more difficut to mount these attacks
and to limit the ways by which anintruder can seize control of asystem via a bufer
overlow attack. In this section, we will present ones that are provided by recent
versions of Gec for Linux.

image44.png
1 // Fig. 5.12: Fig0si2.cop
2 // square function used to demonstrate the function

3 7/ call stack and activation records.

4 #include <iostreams

5 using nanespace std;

¢

7 int square(int); // prototype for function square

s

9 int main(Q)

0 {

" int a = 10; // value to square (local automatic variable in main)

iz

13 cout << a << squired: " << SQUARECE) << endl; // display a squared
14} // end main

15

16 // returns the square of an integer
17 int squareC int x) // x is a local variable

15

19 return x * x; // calculate square and return result
20} // end function square

10 squared: 100

Fig. 5.12 | Demonstrating the function call stack and activation records.

image45.png
Ste 1: Operating system invokes man to execute applcation.

(= int main0
i
Opeating system e
f— cout << @ << " squared: "
= I << square(a) << endl;
Retun location RI —— return 0

3
Function al stack fter Step |
Top of stack

Retun location: RI

Activaton ecord || Automatic vrabes:

o | e

T system executing insuuctions

Linestht epresent the operting

Fig. 5.13 | Function cal stack after the operating system invokes main to
execute the program,

image46.png
Sep 2 main imvokes uncion sauare to prorn cicltion.

e =te0 e it sqareC it x)
0
ot a - 107 «
cout << a << * sauared: return x + xi
Ren ecaton k2 << squareCa) << endl i
[

)
Forcton cl sk e S 2.
Top sk

Aetaon o e
ncton sauare

Aevaton ez
oo main

Fig. 5.14 | Function callstack after main invokes square to perform the

image47.png
Step 3 square retums s st tomatn
int main0)

8
int a - 10; i
cout << a << " squared: return x * x;

Retun location R2 << square(a) << end]
return 0:
b

Function callstack after Sep 3
Top of stack ——s=

int square(int x)

Retun foaton: RY

Actiaton ecord | Automatic arables:

ot function main
a1 |

Fig. 5.15 | Function call stack after function square returs to marin.

image1.png
printt.o

netto.c [P) uotto.s [compier| netto.s [nssembier] noiios | Linkar | nette
processor i) iy)
souce PP woditoa Assombly Reocatable Executable
progam source progam object bject
tw0) progam o) progams program
(ohary) onan

ext)
igure 1.3 The compilation system.

Here, the acc compiler driver reads the source file hello. c and translates it into
i executable object file hello. The translation is performed in the sequence
 four phases shown in Figure 13. The programs that perform the four phases
preprocessor. compiler. assembler, and linker) are known collectively as the
ompilation system.

image2.png
Intel X8 Processors, cont.

m Machine Evolution
= 386 1985
" Pentium 1993
= Pentium/MMX 1997
= PentiumPro 1995

= Pentium llI 1999
= Pentium 4 2001
= Core 2 Duo 2006
= Core i7 2008

m Added Features
® |nstructions to support multimedia operations
® |nstructions to enable more efficient conditional operations
® Transition from 32 bits to 64 bits

image3.png
Aside Moore's law

10e100

106108

108007

§ romios
£

1084105

108001
R T YT ST T
Yaar

I we plotthe number of ransistos inthe different Intelprocessors versustheyear of introduction, and.
use a logarithmic scale for the y-axis, we can see that the growth has been phenomenal. iting a line
through the data, we see that the number of transistors increases at an annual rate of approximately
387%, meaning that the number of transistors doubles about every 26 months. This growth has been
‘Sustained over the multple-decade history of x86 microprocessors.

image4.png
Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
or write assembly/machine code.
= Exemples: instruction setspecification, registers.

roarchitecture: Implementation of the architecture.
= Exemples: cache sizes and core frequency.

= Code Forms:
= Machine Code: The byte-level programsthat a processor executes.
= Assembly Code: A text representation of machine code.

= Example ISAs:
= Intel: 85, 1432, Itanium, x86-64.
= ARM: Used inalmostall mobile phones

