Chapter 5- Optimizing Performance

Writing an efficient program requires several types of activities such as :

-
£

L

8

must select an appropriate set of algorithms and data structures to solve the problem

must write source code that the compiler can effectively optimize

must understand the capabilities and limitations of optimizing compilers

divide a task into parts that can be computed in parallel, multiple cores and multiple processors.
code that is executed repeatedly in a critical environment, may require optimization

eliminate unnecessary work, which includes eliminating unnecessary function calls, conditional
tests, and memory references.

both the programmer and compiler require a target machine, about how instructions are
processed and the timing characteristics of the different operations.

use the capability of processors to provide instruction-level parallelism, executing multiple
instructions simultaneously

use code profilers —tools that measure the performance - of different parts of a program to detect
inefficiency in the code and improve them

assembly-code must be understood in the way it does inner loops, identifying performance-
reducing attributes such as excessive memory references and poor use of registers

identify critical paths , chains of data dependencies over repeated executions of a loop

make the compiler generate efficient code without compromising the readability, modularity, and
portability of the code

Capabilities and Limitations of Optimizing Compilers

specify the optimization level by invoking gcc with the command-line flag *-O1” will cause it to
apply a basic set of optimizations

invoking gcc with flag --O2’or-O3’ will cause it to apply more extensive optimizations

more extensive optimizations may expand the code size and may make the program more difficult
to debug

C code when compiled just with optimization level 1, vastly outperforms a naive version
compiled with the highest possible optimization levels.

make the compiler perform only safe optimizations to eliminate possible sources of undesired run-
time behavior

void twiddlel(int *xzp, int *yp)

1{
*¥Ip += *yp;
¥Ip += *yp;
}
void twiddle2(int *xp, int *yp)
{
*¥Ip += i *yp;
}

Function twiddle2 requires only three memory references (read *xp, read*yp, write *xp), whereas twiddlel

requires six (two reads of *xp, two reads of *yp, and two writes of*xp). So twiddle2 is more efficient than

twiddlel.

Consider, however, the case in which xp and yp are equal. Then function
twiddlel will perform the following computations:

3 *xp += *xp; [+ Double value at xp */
4 *xp += *xp; /* Double value at xp */

The result will be that the value at xp will be increased by a factor of 4. On the
other hand, function twiddle2 will perform the following computation:

9 *xp += 2% *xp; /+* Triple value at xp */

The result will be that the value at xp will be increased by a factor of 3. The compiler
knows nothing about how twiddlei will be called, and so it must assume that
arguments xp and yp can be equal. It therefore cannot generate code in the style
of twiddle2 as an optimized version of twiddlel.

The case where two pointers may designate the same memory location is
known as memory aliasing. In performing only safe optimizations, the compiler

must assume that different pointers may be aliased. As another example, for a
program with pointer variables p and q, consider the following code sequence:

x = 1000; y = 3000;

*q = ¥; [+ 3000 =/

p = x; f 1000 */

t1 *q; /* 1000 or 3000 %/

The value computed for t1 depends on whether or not pointers p and q are
aliased—if not, it will equal 3000, but if so it will equal 1000. This leads to one
of the major optimization blockers, aspects of programs that can severely limit
the opportunities for a compiler to generate optimized code. If a compiler cannot
determine whether or not two pointers may be aliased, it must assume that either
case is possible, limiting the set of possible optimizations.

A second optimization blocker is due to function calls. As an example, con-
sider the following two procedures:

int £():

int funci() {
return £() + £f() + £0) + £();
}

int func2() {
return 4*f():

WEOO0) R LA s b kg =

¥

It might seem at first that both compute the same result, but with func2 calling f
only once, whereas funci calls it four times. It is tempting to generate code in the
style of func2 when given funci as the source.

Consider, however, the following code for £:

int counter = 0;

1

2

3 int £O {
4 return counter++;
5

}

This function has a side effect—it modifies some part of the global program state.
Changing the number of times it gets called changes the program behavior. In
particular, a call to funci would return 04 1+ 2 4 3 = 6, whereas a call to func2
would return 4 - 0 = 0, assuming both started with global variable counter set to 0.
Most compilers do not try to determine whether a function is free of side ef-
fects and hence is a candidate for optimizations such as those attempted in func2.
Instead, the compiler assumes the worst case and leaves function calls intact.

A second optimization blocker is due to function calls. As an example, con-
sider the following two procedures:
int £();
int funcil() {

return £{) + £ + £ + £();

¥

int func2() {
return 4*f();

L=I I TR (R R TV VIR

¥

It might seem at first that both compute the same result, but with func2 calling £
only once, whereas funci1 calls it four times. It is tempting to generate code in the
style of func2 when given funci as the source.

Aside Optimizing function calls by inline substitution

As described in Web Aside asm:opr, code involving function calls can be optimized by a process known
as inline substitution (or simply “inlining™), where the function call is replaced by the code for the body
of the function. For example, we can expand the code for funci by substituting four instantiations of
function £:

/* Result of inlining f in funcl */

1

2 int funelin() {

3 int t = coumter++; /= +0 =/
4 t += countert++; f® +1 =f
5 t += countert+; f* +2 =/
6 t += countert++; f= +3 =/
7 return t;

8

}

This transformation both reduces the overhead of the function calls and allows further optimization of
the expanded code. For example, the compiler can consolidate the updates of global variable counter
in funciin to generate an optimized version of the function:

/* Dptimization of imlined code */
int funclopt() {
int t = 4 * counter + 6;
counter = t + 4;
return t;

(= - TU R X

}

This code faithfully reproduces the behavior of funci for this particular definition of function £.

Recent versions of gee attempt this form of optimization, either when directed to with the
command-line option “—finline’ or for optimization levels 2 or higher. Since we are considering
optimization level 1 in our presentation, we will assume that the compiler does not perform inline
substitution.

5.2 Expressing Program Performance

We introduce the metric cvcles per element, abbreviated “CPE,” as a way to
express program performance in a way that can guide us in improving the code.
CPE measurements help us understand the loop performance of an iterative
program at a detailed level. It is appropriate for programs that perform a repetitive
computation, such as processing the pixels in an image or computing the elements
in a matrix produoct.

The sequencing of activities by a processor is controlled by a clock providing
a regular signal of some frequency, usually expressed in gigahertz (GHz), billions
of cycles per second. For example, when product literature characterizes a system
as a “4 GHz" processor, it means that the processor clock runs at 4.0 x 10° cycles
per second. The time required for each clock cycle is given by the reciprocal of
the clock frequency. These tvpically are expressed in nanoseconds (1 nanosecond
is 1077 seconds), or picoseconds (1 picosecond is 107! seconds). For example,
the period of a 4 GHz clock can be expressed as either 0.25 nanoseconds or 250
picoseconds. From a programmer’s perspective, it is more instructive to express
measurements in clock cycles rather than nanoseconds or picoseconds. That way,
the measurements express how many instructions are being executed rather than
how fast the clock mns.

B x s 0= ' am : ma x x - ' 2 —

Non-Pipelined and Pipelining exercise
The 5 stages (Fetch, Decode, Execute, Memory, Writeback) of the processor have the following latencies:

Fetch Decode Execute | Memory | Writeback
300 300 375 500 125

Assume that when pipelining, each pipeline stage costs 20 ps extra for the registers between pipeline stages.

Non-pipelined processor case:

What is the cycle time? (CT)

What is the latency of an instruction? (Latency)
What is the throughput? (Throughput)

Because there is no pipelining, the cycle time must allow an instruction to go through all stages in one cycle. The latency is
the same as cycle time since it takes the instruction one cycle to go from the beginning of fetch to the end of writeback. The
Throughput is defined as 1/CT inst/ps. (ps — picoseconds)

CT =300 + 300 + 375 + 500 + 125 = 1600 ps
Latency = 1600 ps
Throughput = 1/CT = 1/1600 inst/ps

Pipelined processor case:

What is the cycle time? (CT)

What is the latency of an instruction? (Latency)
What is the throughput? (Throughput)

Pipelining reduces the cycle time to the length of the longest stage plus the register delay. Latency becomes CT*N (CT-
Cycle time) where N is the number of stages as one instruction will need to go through each of the stages and each stage
takes one cycle. The throughput formula remains the same as 1/CT instr/ps.

CT =500 + 20 = 520 ps
Latency =5 * 520 = 2600 ps
Throughput = 1/520 inst/ps

Splitting a pipeline stage case:
Fetch Decode Execute | Memory | Writeback
300 300 375 500 125

If you could split one of the pipeline stages into 2 equal halves, which one would you choose?
Assume that when pipelining, each pipeline stage costs 20 ps extra for the registers between pipeline stages.

What is the new cycle time?
What is the new latency?
What is the new throughput?

We would want to choose the longest stage to split in half- the 500 one. The new cycle time becomes the originally 2nd

longest stage length - 375. Calculate latency and throughput correspondingly, but remember there are now 6 stages instead
of 5.

CT =375+ 20 =395 ps
Latency = 6 * 395 = 2370 ps
Throughput = 1/395 inst/ps

You are given a non-pipelined processor design which has a cycle time of 10ns and average CPI of 1.4.

If the 5 stages are 1ns, 1.5ns, 4ns, 3ns, and 0.5ns, what is the best speedup you can get compared to the
original processor?

The cycle time is limited by the slowest stage, so CT = 4ns.

Speedup =old CT / new CT = 10ns/4ns = 2.5x

Many procedures contain a loop that iterates over a set of elements. For
example, functions psunl and psun2 in Figure 3.1 both compute the prefix sum
of a vector of length n. For a vector @ = (ay, ay, ..., a,_,}, the prefix sum p =
(Pge Pps -0 Ppy) 15 defined as

Pg = g ‘1
: 3.
p=p g ta, 1 <i<n .

Function psuml computes one element of the result vector per iteration. The
second uses a technigue known as loop unrolling to compute two elements per
iteration. We will explore the benefits of loop unrolling later in this chapter. See
Froblems 5.11, 5.12, and 5.21 for more about analyxing and optimizing the prefix-
sum computation.

The time required by such a procedure can be charactenzed as a constant plus
a factor proportional to the number of elements processed. For example, Figure 5.2
shows a plot of the number of clock cycles required by the two functions for a
range of values of n. Using a least sguares fit, we find that the run times (in clock
cycles) for peuml and psum? can be approximated by the equations 496 + 10.0n
and 300 + 630, respectively. These equations indicate an overhead of 496 to 500

woid psumil(fleat all, float pll. long int @l

i
1 lonmg imt i
5 P[0l — =007
for (i = 17 i < m; i=+]
pCil — pli—41] -+ alil:
a ¥
1C woid pamP({(floatr all. £float pld. long int ol
11 g
132 Jlong imt i
1 =[01 — =C0]d:
14 for (i — 4; i < m—1; i=+—23 {
15 float mid wval = p[i—41 =+ =[il:
16 =Cid - mid_wal;
17 P Li=1] - mid_wal = =[i+1] :
18 ¥
15 F= For od n,., fimish -
20 if (i =< m)
2 p[il = pL[i—11 + al[il:
23 ¥
Figure 5.1 Preficc-swm functions. These provide examples for how we express prograrm
performance.
SO
= S0
o
e
i
s
= OO - —
Pemmd i o
= Slope = 100 P
= 1500 —— — ===
& e —— et PEumz
e) e Slope = 6.5
1000 — —
soo =
o T T T
o S L] 150 p=lu
Element=s
Ficgu

e 5.7 Performance of prefix-sum functions. The slope of the lines indicates the

Function lower2 shown in Figure 5.7 is identical to that of lowerl , except that we have moved the call to
Strlen out of the loop.

1 /* Convert string to lowercase: slow */
2 void lowerl{char #*s)
3 {
4 int i;
5
6 for (i = 0; i < strlen(s); i++)
7 if (s[il] >= "A' && s[i] <= 'Z")
B s[il —= ("A' — 'a");
-] ¥
10
11 /* Convert string to lowercase: faster */
12 void lower2(char *s)
13 {
14 int i;
15 int len = strlen(s);
16
17 for (i = 0; i < len; i++)
18 if (s[i] >= '"A' && s[i] <= 'Z")
19 s[il —= ('A" — "a');
20 ¥
200
180
160 =
- 140
£ 120 -
§ 100 lowerl
; 80
60
a0) s
20 — =l
0 H— ———a TS o o e = 3 lomrz =
o 100,000 200,000 300,000 400,000 500,000
Strimg length
a)
String length
Function 16,384 32,768 65,536 131072 262,144 524 288 1,048,576
Lowerl .19 oTT 3.08 12.34 4939 198.42 To1.22

Lower2 O OO0 O OO0 0.0001 00002 00004 0000 0.0015

5.4 Eliminating Loop Inefficlencles

Observe that procedure combined, as shown in Figure 5.5, calls function wec_
length as the test condition of the for loop. Recall from our discussion of how
to translate code containing loops into machine-level programs (Section 3.6.5)
that the test condition must be evaluated on every iteration of the loop. On the
other hand, the length of the vector does not change as the loop proceeds. We
could therefore compute the vector length only once and use this value in our test
condition.

Figure 5.6 shows a modified version called conbine2, which calls wec_length
at the beginning and assigns the result to a local variable length. This transfor-
mation has noticeable effect on the overall performance for some data types and

1 JS= Howe call to wec_length ocut of loop =5
2 wold combineZ{vec_ptr v, data_t =dest])
k! {

4 loog imt i;

5 loog imt length = wvec_lengthiw]l;

&

7 sdast = IDENT;

] for (1 = 0; 1 < length; Z++) |

o data_t wval;

10 get_wvec_element(wv, i, &vall;
11 sdegt = sdeat OF val;

12 ¥

13 T

Figurs 5.6 Improving the efficiency of the loop test. By moving the call to wvec_
length out of the loop test, we eliminate the need to execute it on every iteration.

operations, and minimal or even none for others. In any case, this transformation is
required to elimmate inefficiencies that would become bottlenecks as we attempt
further optimizations.

Imteger Floating point
Function Page Method + * + F» D=
combinel 485 Abstract -04 1200 1200 1200 1200 1300

combine? 486 Move vec_length 803 .09 1009 1109 1208

This optimization 15 an instance of a general class of optimizations known as
code motion. They involve identifying a computation that is performed multiple
times (e.g.. within a loop). but such that the result of the computation will not
change. We can therefore move the computation to an earlier section of the code
that does not get evaluated as often. In this case, we moved the call to vec_length
from within the looo to ust before the loon.

5.5 Reducing Procedure Calls

As we have seen, procedure calls can incur overhead and also block most forms of
program optimization. We can sce in the code for combine2 (Figure 5.6) that get_
vec_element is called on every loop iteration to retrieve the next vector element.
This function checks the vector index i against the loop bounds with every vector
reference, a clear source of inefficiency. Bounds checking might be a useful feature
when dealing with arbitrary array accesses, but a simple analysis of the code for
combine2 shows that all references will be valid.

Suppose instead that we add a function get_vec_start to our abstract data
type. This function returns the starting address of the data array, as shown in
Figure 5.9. We could then write the procedure shown as combine3 in this figure,
having no function calls in the inner loop. Rather than making a function call to
retricve cach vector element, it accesses the array directly. A purist might say that
this transformation seriously impairs the program modularity. In principle, the
user of the vector abstract data type should not even need to know that the vector

f* Mowe call to wec_length out of loop *f
2 void combipne2(vec_ptr v, data t #dest)

ERE |
long iot i;
5 long int length = wec_lengthiv);
&
7 *dest = IDENT;
] for (i = 0; i < length; i++)} {
9 data_t wal;
10 get_vec_selement(v, i, Eval);
1 *deat = *deat OF wval;
2 }
1z}

Figure 5.6 Improving the efflclency of the loop test. By maoving the call to vec_
length out of the loop test, we eliminate the need to execute It on every Iteration.

o e il e o
data_t =get_wvec_starti{wec_ptr wl
1

returm w—>data:

Bl oW -

¥

codeio e o
Fow Direct accaess Tto waoctor datas f
woid combineZEZ(wvec_ptr w. data_t =destdh
i
loog imt i
Jong imt length — wec_length{w);
data_t =data — get_wec_start{wl:

wdast — IDHENT;:
for (i — O0; i = length: is+3) L
s=dest = =dest OP dat=[il:

LI TR - N T R Y ¥

=
=]

-

T

12 ¥

Figure 5 9 Eliminating functicon calls within the loop. The resulting code nuns mwckh
faster, at sowmie cost in program o wlaritye

contents are stored as an array, rather than as some other data structure such as a
Ihnked list. A more pragmatic programmeaer would argoe that this transformation
is a nocessary step toward achieving high-performance results

Imte g Floating poimnt
Functiomn Page Mlethod -+ - - F = I =
combime? SHiG MM owve wec_langth =03 .09 1000 11 e 12 =
combina3 ol Iirect data acocss Gl E.01 10u0 11 . 12 02

The resulting improvement is surprisimgly modest. only improving the per-
formance for integer sum. Again, howewver, this inefficiency would become a bot-
tleneck as we attempt further optimizations. We will return to this function later
{(Section 5.11.2) and see why the repeated bounds checking by combine? docs not
make its performance much worse. For applications in which performance is a sig-
nificant isswe. once must often compromise modularity and abstraction for specd.
It is wise to include documentation on the transformations applied, as well as the

assumptions that led to them. in case the code neceds to be modified later.

3.6 Eliminating Unneeded Memory Reterences

The code for combined accumulates the value being computed by the combining
operation at the location designated by the pointer dest. This attribute can be
seen by examining the assembly code generated for the compiled loop. We show

492 Chapter 5 Optimizing Program Performance

here the x86-64 code generated for data type £1loat and with multiplication a:

combining operation:

combiped: data_t = float, OF = #

1 in frdr, data in frax, dast in Erbp

1 .L48a: loop:

2 mowss [:Ihp}. Fxmm Hoad product from dast

| mulss (Yrar, ¥rdr.4), Ymmi Multiply product by datali]
4 mOvVES Rxmm, (%rbpl Store product at dest

5 addq_ $1, Yrdx Incrament i

f cmpq Lrdx, Eri2 Compare i:limit

7 jg .L40g If », goto loop

We see in this loop code that the address corresponding to pointer dest is held
in register Krbp (unlike 1n IA32, where Yebp has special use as a frame pointer,
its 64-bat counterpart %rbp can be used to hold arbitrary data). On iteration 1, the
program reads the value at this location, multiphes it by data[:], and stores the
result back at dest. This reading and writing is waste ful, since the value read from
dest at the beginning of cach iteration should simply be the value written at the
end of the previows iteration.

We can eliminate this needless reading and writing of memory by rewriting the
code in the style of combine4 in Figure 5.10. We introduce a temporary variable
acc that is used in the loop to accumulate the computed valuwe. The result is stored
at dest only after the loop has been completed. As the assembly code that follows
shows, the compiler can now use register %xmm0 to hold the accumulated value.

Section 5.6 Eliminating Unneeded Memory References 493

1 F+ Boccummlate result in local wariable =
Z wold combined{vec_ptr w, data_t +dest)
1 i

4 long imt i;

5 long int length = wec_lemgthiv];

= data_t =data = get_wec_start{v);

7 data_t acc = IDENT;

g

= for (i = 0; i < length; i++) {
10 acc = acc OF datali];
11 T
12 wdaEt = acc;
13 T

Figure 5.10 Accumulating result in temporary. Holding the accumulated value in local
wariable acc (short for "accumulator™) eliminates the need to retrieve it from memory
and write back the updated value on every loop iteration.

Compared to the loop in combine3d, we have reduced the memory operations per
iteration from tewo reads and one write to just a single read.

Integer Floating point
Function Page Method + * + F * D=
combine3 491 Direct data access 601 801 1001 1101 1202
combine4 493 Accumulate in temporary 2.00 3.00 3.00 4.00 5.00

All of our times improve by at least a factor of 2.4 x, with the integer addition case

dropping to just two clock cycles per element.

5.8 Loop Unrolling

Loop unrolling is a program transformation that reduces the number of iterations
for a loop by increasing the number of elements computed on each iteration. We
saw an example of this with the function psum2 (Figure 5.1), where each iteration
computes two elements of the prefix sum, thereby halving the total number of
iterations required. Loop unrolling can improve performance in two ways. First,
it reduces the number of operations that do not contribute directly to the program
result, such as loop indexing and conditional branching. Second, it exposes ways
in which we can further transform the code to reduce the number of operations
in the critical paths of the overall computation. In this section, we will examine
simple locop unrolling, without any further transformations.

Figure 5.16 shows a version of our combining code using two-way loop un-
rolling. The first loop steps through the array two elements at a time. That is, the
loop index i is incremented by 2 on each iteration, and the combining operation
is applied to array elements i and i + 1 in a single iteration.

In general, the vector length will not be a multiple of 2. We want our code
to work correctly for arbitrary vector lengths. We account for this requirement in
two ways. First, we make sure the first loop does not overrun the array bounds.
For a vector of length n, we set the loop limit to be 1 — 1. We are then assured that
the loop will only be executed when the loop index § satisfies i = a1 — 1, and hence
the maximum array index i + 1 will satisfy i + 1 <i{a — 13 +1=n.

We can generalize this idea to unroll a loop by any factor &, To do so, we
set the upper limit to be n — &k 4+ 1, and within the loop apply the combining
operation to elements § through i 4+ & — 1. Loop index i is incremented by k in each
iteration. The maximum array index i + & — 1 will then be less than /2. We include
the second loop to step through the final few elements of the vector one at a time.
The body of this loop will be executed between 0 and & — 1 times. For £ =2, we
could use a simple conditional statement to optionally add a final iteration, as we
did with the function psmm2 (Figure 5.1). For k£ = 2, the finishing cases are better
expressed with a loop, and so we adopt this programming convention for £ =2
as well.

Fo Thmroll loop by 2 =)

1

2 woild combineb(vec_ptr w, data t =dest)
3 €

4 long int i

5 long int length = wec_lengthiw):

& int limit — length—1:

7 data_t =+data — get_wec_start{w);

B data_t acc — IDENT;

a9

10 F+= Combine 2 elements at a time =)
11 for (i — 0; i < limit; i+=23) {

12 acc = {(acc OF deatal[il) OF dacal[i+i1]:
13 T

14

15 4+ Finish any remaining elements =
16 for {: i < lemgth; i++y {

7 acc — acc OP datalil;

18 T

Lk sdest = @cC;

20 ¥

Figure 5,16 Unrolling loop by factor & — 2. Loop unrolling can reduwce the effect of
loop overfvead.

Practice Problem 5.7
Maodify the code for combines to unroll the loop by a factor K = 5.

When we mecasore the perfformance of unrolled code for unrollhing factors
& =2 (combines) and &£ = 3, we get the following resulis:

Inlcgor Floatling paiml
Funclion Pagc Bl bnewd - - - F= I =
combined 40% Mo anrolling, 1] F.M] 4000 Sk
combinab s10 Uinroll by w2 20 150 3. 4000 Sk
Unroll by =3 L. 1.4M2 300 4000 SH
Tatcncy bownd L. 3.0 3.0 400]

Throughpuol boomd 1 1.4 1 Wk] 1k

