
Chapter 5- Optimizing Performance

Writing an efficient program requires several types of activities such as :

 must select an appropriate set of algorithms and data structures to solve the problem

 must write source code that the compiler can effectively optimize

 must understand the capabilities and limitations of optimizing compilers

 divide a task into parts that can be computed in parallel, multiple cores and multiple processors.

 code that is executed repeatedly in a critical environment, may require optimization

 eliminate unnecessary work, which includes eliminating unnecessary function calls, conditional

tests, and memory references.

 both the programmer and compiler require a target machine, about how instructions are

processed and the timing characteristics of the different operations.

 use the capability of processors to provide instruction-level parallelism, executing multiple

instructions simultaneously

 use code profilers —tools that measure the performance - of different parts of a program to detect

inefficiency in the code and improve them

 assembly-code must be understood in the way it does inner loops, identifying performance-

reducing attributes such as excessive memory references and poor use of registers

 identify critical paths , chains of data dependencies over repeated executions of a loop

 make the compiler generate efficient code without compromising the readability, modularity, and

portability of the code

Capabilities and Limitations of Optimizing Compilers

 specify the optimization level by invoking gcc with the command-line flag ‘-O1’ will cause it to

apply a basic set of optimizations

 invoking gcc with flag ‘-O2’or‘-O3’ will cause it to apply more extensive optimizations

 more extensive optimizations may expand the code size and may make the program more difficult

to debug

 C code when compiled just with optimization level 1, vastly outperforms a naive version

compiled with the highest possible optimization levels.

 make the compiler perform only safe optimizations to eliminate possible sources of undesired run-

time behavior

 Function twiddle2 requires only three memory references (read *xp, read*yp, write *xp), whereas twiddle1

 requires six (two reads of *xp, two reads of *yp, and two writes of*xp). So twiddle2 is more efficient than

twiddle1.

Non-Pipelined and Pipelining exercise

The 5 stages (Fetch, Decode, Execute, Memory, Writeback) of the processor have the following latencies:

 Fetch Decode Execute Memory Writeback

 300 300 375 500 125

Assume that when pipelining, each pipeline stage costs 20 ps extra for the registers between pipeline stages.

Non-pipelined processor case:

What is the cycle time? (CT)

What is the latency of an instruction? (Latency)

What is the throughput? (Throughput)

Because there is no pipelining, the cycle time must allow an instruction to go through all stages in one cycle. The latency is

the same as cycle time since it takes the instruction one cycle to go from the beginning of fetch to the end of writeback. The

Throughput is defined as 1/CT inst/ps. (ps – picoseconds)

CT = 300 + 300 + 375 + 500 + 125 = 1600 ps

Latency = 1600 ps

Throughput = 1/CT = 1/1600 inst/ps

Pipelined processor case:

What is the cycle time? (CT)

What is the latency of an instruction? (Latency)

What is the throughput? (Throughput)

Pipelining reduces the cycle time to the length of the longest stage plus the register delay. Latency becomes CT*N (CT-

Cycle time) where N is the number of stages as one instruction will need to go through each of the stages and each stage

takes one cycle. The throughput formula remains the same as 1/CT instr/ps.

CT = 500 + 20 = 520 ps

Latency = 5 * 520 = 2600 ps

Throughput = 1/520 inst/ps

Splitting a pipeline stage case:

 Fetch Decode Execute Memory Writeback

 300 300 375 500 125

If you could split one of the pipeline stages into 2 equal halves, which one would you choose?

Assume that when pipelining, each pipeline stage costs 20 ps extra for the registers between pipeline stages.

What is the new cycle time?

What is the new latency?

What is the new throughput?

We would want to choose the longest stage to split in half- the 500 one. The new cycle time becomes the originally 2nd

longest stage length - 375. Calculate latency and throughput correspondingly, but remember there are now 6 stages instead

of 5.

CT = 375 + 20 = 395 ps

Latency = 6 * 395 = 2370 ps

Throughput = 1/395 inst/ps

You are given a non-pipelined processor design which has a cycle time of 10ns and average CPI of 1.4.

If the 5 stages are 1ns, 1.5ns, 4ns, 3ns, and 0.5ns, what is the best speedup you can get compared to the
original processor?
The cycle time is limited by the slowest stage, so CT = 4ns.
Speedup = old CT / new CT = 10ns/4ns = 2.5x

Function lower2 shown in Figure 5.7 is identical to that of lower1 , except that we have moved the call to

Strlen out of the loop.

